185 | 0 | 132 |
下载次数 | 被引频次 | 阅读次数 |
为实现企业库存烟叶原料烟气焦油、烟碱及CO释放量的快速检测,通过采集889种片烟的近红外光谱(NIR),结合Kennard-Stone(K-S)算法筛选出150种代表性片烟进行建模。采用偏最小二乘法(PLS)作为建模方法,运用多元散射校正(MSC)、Savitzky-Golay(SG)平滑及一阶导数进行光谱预处理,选择特征谱段和最佳主成分数,建立了基于烟叶原料NIR的烟气焦油、烟碱及CO释放量预测模型。结果表明:(1)在显著性水平0.05时,预测结果与标准方法检测结果不存在显著性差异。(2)焦油、烟碱及CO最佳PLS预测模型的决定系数(R2)均大于0.80。(3)焦油、烟碱和CO校正均方根误差(RMSEC)分别为1.13、0.13和0.97,预测均方根误差(RMSEP)与其比值分别为1.03、1.00和0.95。(4)叶组叠加实验结果显示,各原料预测结果按照配方比例线性加和结果与叶组实测结果相当,相对偏差<10%。建立的焦油、烟碱及CO释放量的近红外预测模型准确可靠,可用于烟叶原料烟气常规化学成分释放量的快速定量预测。
Abstract:For rapid determination of tar,nicotine and CO in mainstream smoke released from tobacco leaves stored in warehouses of different tobacco enterprises,near-infrared(NIR)spectra of 889 tobacco strip samples were collected and the Kennard-Stone(K-S)algorithm was used to select 150 representative tobacco strip samples for Partial Least Squares(PLS) regression modeling. The spectra were pre-processed using Multivariate Scatter Correction(MSC),Savitzky-Golay(SG) smoothing and first order derivatives. By selecting the characteristic spectral segments and the optimal number of principal components,the prediction models for the releases of tar,nicotine and CO in cigarette smoke based on the NIR spectroscopy of tobacco leaves were established. The results showed that:1) There were no significant differences between the results of the prediction models and the standard methods at 0.05 level of significance. 2)All the coefficients of determination(R2)of the best PLS prediction models for tar,nicotine and CO releases were higher than 0.80. 3)The root mean square errors of calibration(RMSEC)for tar,nicotine and CO were 1.13,0.13 and 0.97,respectively. The ratios of the root mean square error of prediction(RMSEP)to the RMSEC for tar,nicotine and CO were 1.03,1.00 and 0.95,respectively. 4)The results of the leaf blending overlay experiment showed that the predicted results of each tobacco raw material linearly added according to the formula ratios,which closely matched the actual determined result of the leaf blending with a relative deviation of less than 10%. The established near-infrared prediction models for the releases of tar,nicotine and CO were therefore considered to be accurate,reliable and suitable for rapid quantitative prediction of the releases of routine cigarette smoke components from tobacco leaves.
[1]荆磊磊,申钦鹏,张涛,等. FT-NIR光谱法快速预测烟草中的游离氨基酸[J].烟草科技,2016,49(1):54-59.JING Leilei, SHEN Qinpeng, ZHANG Tao, et al.Rapid prediction of contents of free amino acids in tobacco by Fourier transform-near infrared spectroscopy[J].Tobacco Science&Technology,2016,49(1):54-59.
[2]杨建云,田孟玉,裴梓烨,等.基于NIR技术的初烤烟叶致香成分含量特性快速定量评价[J].轻工学报,2018,33(5):60-68.YANG Jianyun, TIAN Mengyu, PEI Ziye, et al.Rapid quantitative evaluation of the content of aroma components in flue-cured tobacco leaves based on near-infrared spectroscopy[J]. Journal of Light Industry,2018,33(5):60-68.
[3]施丰成,李东亮,冯广林,等.基于NIR的PLS-DA算法判别烤烟烟叶产地[J].烟草科技,2013(4):56-59.SHI Fengcheng,LI Dongliang,FENG Guanglin,et al.Discrimination of producing areas of flue-cured tobacco leaves with near infrared spectroscopy-based PLS-DA algorithm[J]. Tobacco Science&Technology, 2013(4):56-59.
[4] Liao F,Li Y S,He W M,et al. Evaluation of aroma styles in flue-cured tobacco by near infrared spectroscopy combined with chemometric algorithms[J]. Journal of Near-Infrared Spectroscopy,2020,28(2):93-102.
[5]邱军,王允白,张怀宝,等. NIR法预测烟气总粒相物中的烟碱含量[J].中国烟草科学,2006,27(2):12-13.QIU Jun, WANG Yunbai, ZHANG Huaibao, et al.Prediction of nicotine in total particulate matter by near infrared spectroscopy[J]. Chinese Tobacco Science,2006,27(2):12-13.
[6]何智慧,罗嘉,练文柳,等.卷烟焦油的傅立叶变换近红外测定技术[J].湖南文理学院学报(自然科学版),2009,21(3):59-61.HE Zhihui,LUO Jia,LIAN Wenliu,et al. Speciation analysis of Fe, Mn in 4 kinds of treatment gastritis Chinese traditional medicines[J]. Journal of Hunan University of Arts and Science(Natural Science),2009,21(3):59-61.
[7]何智慧,罗嘉,练文柳,等.傅立叶变换近红外技术测定卷烟烟碱的释放量[J].红外技术,2008,30(9):553-556.HE Zhihui, LUO Jia, LIAN Wenliu, et al.Determination of nicotine in the mainstream smoke by Fourier transform near infrared spectrometry[J].Infrared Technology,2008,30(9):553-556.
[8]陈勇,杨凯,束茹欣.烟叶原料单位烟气释放量的近红外速测模型建立[J].计算机与应用化学,2016,33(1):92-96.CHEN Yong,YANG Kai,SHU Ruxin. Near infrared speed measurement model established based on units smoke emission of raw tobacco[J]. Computers and Applied Chemistry,2016,33(1):92-96.
[9] Di Luzio C, Morzilli S, Cardinale E. Rapid near infrared reflectance analysis(NIRA)of mainstream smoke collected on Cambridge filter pads[J]. Beitr?ge zur Tabakforschung International,1995,16(4):171-184.
[10]王志国,钱晓春,杜文,等.基于剑桥滤片的傅立叶变换近红外技术测定卷烟烟碱的释放量[C]//2008年中国机械工程学会年会暨甘肃省学术年会文集.兰州:中国机械工程学会,2008:191-196.WANG Zhiguo, QIAN Xiaochun, DU Wen, et al.Determination of nicotine in the mainstream smoke collected on Cambridge filter pads by Fourier transform near infrared spectrometry[C]//2008 Annual Meeting of Chinese Mechanical Engineering Society and Annual Academic Meeting of Gansu Province. Lanzhou:Chinese Mechanical Engineering Society,2008:191-196.
[11]王家俊,梁逸曾,汪帆.偏最小二乘法结合傅里叶变换NIR同时测定卷烟焦油,烟碱和一氧化碳的释放量[J].分析化学,2005,33(60):793-797.WANG Jiajun, LIANG Yizeng, WANG Fan.Simultaneous determination of tar,nicotine and carbon monoxide in smoking by partial least squares and Fourier transform near infrared transmission spectrometry[J]. Chinese Journal of Analytical Chemistry,2005,33(60):793-797.
[12] Kennard R W,Stone L A. Computer aided design of experiments[J]. Technometrics,1969,11(1):137-148.
[13] Savitzky A,Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J].Analytical Chemistry,1964,36(8):1627-1639.
[14] GB 5606.3—2005卷烟第3部分:包装、卷制技术要求及贮运[S].GB 5606.3—2005 Cigarettes—Part 3:Technical requirements for packing,making,storage and transport[S].
[15] GB/T 16447—2004烟草及烟草制品调节和测试的大气环境[S].GB/T 16447—2004 Tobacco and tobacco products—Atmosphere for conditioning and testing[S].
[16] GB/T 16450—2004卷烟常规分析用吸烟机定义和标准条件[S].GB/T 16450—2004 Routine analytical cigarette-smoking machine—Definition and standard conditions[S].
[17] GB/T 23356—2009卷烟烟气气相中CO的测定非散射红外法[S].GB/T 23356—2009 Cigarettes—Determination of carbon monoxide in vapour phase of cigarette smoke—NDIR method[S].
[18] GB/T 19609—2024卷烟用常规分析用吸烟机测定总粒相物和焦油[S].GB/T 19609—202 Cigarettes—Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine[S].
[19] GB/T 23203.1—2013卷烟总粒相物中水分的测定第1部分:气相色谱法[S].GB/T 23203.1—2013 Cigarettes—Determination of water in smoke condensates—Part 1:Gas-chromatographic method[S].
[20] GB/T 23355—2009卷烟总粒相物中烟碱的测定气相色谱法[S].GB/T 23355—2009 Cigarettes—Determination of nicotine in smoke condensate—Gas-chromatographic method[S].
[21] GB/T 29858—2013分子光谱多元校正定量分析通则[S].GB/T 29858—2013 Standard guidelines for molecular spectroscopy multivariate correction quantitative analysis[S].
[22]褚小立.化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社,2011:77.CHU Xiaoli. Molecular spectroscopy analytical technology combined with chemometrics and its applications[M].Beijing:Chemical Industry Press,2011:77.
[23]李彦周,闵顺耕,刘霞.主成分分析在近红外定量分析校正集样本优选中的应用[J].分析化学,2007,9(35):1331-1334.LI Yanzhou,MIN Shungeng,LIU Xia. Application of principal component analysis in calibration sample selection of near-infrared quantitative model[J]. Chinese Journal of Analytical Chemistry,2007,9(35):1331-1334.
[24] GB/T 37969—2019 NIR定性分析通则[S].GB/T 37969—2019 Standard guidelines for near infrared qualitative analysis[S].
基本信息:
DOI:10.16135/j.issn1002-0861.2024.0881
中图分类号:O657.33;TS411
引用信息:
[1]王志才,张建栋,杨松等.近红外光谱法预测烟叶原料烟气常规化学成分释放量[J].烟草科技,2025,58(04):1-10.DOI:10.16135/j.issn1002-0861.2024.0881.
基金信息:
甘肃省重点研发计划-工业类项目“基于近红外光谱的卷烟产品数字化设计与维护技术研究”(22YF7GA052); 中国烟草实业发展中心科技项目“‘兰州’品牌叶组配方模块化替代技术研究”(ZYSYQ-2024-08); 甘肃烟草工业有限责任公司科技项目“‘兰州’品牌卷烟烟气常规成分释放量近红外预测技术研究”(KJXM-2022-02)